2024年9月
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30          
無料ブログはココログ

« ・半導体不足 | トップページ | ・天体写真に写りこんだセンサごみ除去 »

2021年11月30日 (火)

・撮像素子とは

このブログの記事カテゴリに「撮像素子関連」というものがあるが
そもそも撮像素子について詳しく説明している記事がありませんでした。

撮像素子とはその名前の通り、
フィルムに変わり、光による像を映して電気信号へと変換する素子です。
センサーとかCCDとかCMOSとか記載することもありますが、
それは実は正確ではありません。
センサーは、単に外部の情報を収集する装置のことだし、
CCDやCMOSは回路の種類の名前です。

撮像素子は、複数のフォトダイオードが
碁盤の目状にずらっと並んでいます。
このフォトダイオードの数が画素数。

Image-3

フォトダイオードの詳しい仕組みはここでは説明しませんが、
基本的には光が当たると電荷が貯まります。
強い光ほどたくさん電荷が貯まります。

 

CCDとはこの貯まった電荷を伝送する素子の名前。
下の図の緑の部分がCCD、オレンジが光電変換素子です
青がトランスファーゲート

Image-1

フォトダイオードにたまった電荷がゲートを通り最初のCCDに移ります。
次に隣のCCDに電圧をかけることで電荷が移動します。
これを繰り返すことで、電荷を運んでいきます。

Image-2

下の図のような16x16画素のCCDイメージャに像が投影された時を考えます。
17_20211130180901

白いところほど明るく、電荷がたくさんたまります。
電荷は白い丸で表しています。

下のアニメーションのように、
縦のCCDと横のCCDをうまく使って電荷を伝送していきます。
最後の出力部分でアンプとAD変換が行われてデジタルデータになります。

 

これを見るとわかりますが、すべての画素の電荷が同時にCCDに移されるので
ローリング歪みは発生しません。グローバルシャッターです。
ただし、電荷の転送の間は露光できなかったり、
電荷の伝送に電圧をかけるので電力が大きかったり制約があるので、
ライブビューや動画撮影は難しいという欠点があります。

Image-1_20211130180901


最近ほとんどのカメラで使われているCMOSは
以下の図のようになっています。

Image-5

緑の部分がCMOSです。
CMOSイメージャでの電荷読み出しは
行選択回路と列選択回路で座標を指定して行われます。
Image-6
赤いところを読み出し。
順番に指定して読み出ししていくので、ローリング歪みが生じます。
また、CCDに比べると、
フォトダイオードの周りに回路が沢山ついているのがわかります。
これによって、フォトダイオードの位置が井戸底のようになって
感度が下がってしまいます。

また、アンプがCCDでは出力の手前に一つついているのに対して
CMOSでは各画素についています。
これによりアンプの画素ごとのバラツキがノイズにつながります。

こんな感じで原理的にはCMOSのほうが高感度に弱いのですが、
最近はマイクロレンズの最適化、裏面照射、など
様々な技術を用いることでCCDよりも高感度を実現しています。

CCDで様々な技術を用いて高感度化させればいいと思うかもしれませんが、
CCDは特殊なプロセスで製造されるため、専用工場が必要になってしまいます。
なので流用が効きやすいCMOSのほうに投資されたという背景があります。

 


style="display:block"
data-ad-client="ca-pub-9933859295183410"
data-ad-slot="8984069502"
data-ad-format="auto"
data-full-width-responsive="true">

« ・半導体不足 | トップページ | ・天体写真に写りこんだセンサごみ除去 »

写真講座」カテゴリの記事

コメント

コメントを書く

(ウェブ上には掲載しません)

« ・半導体不足 | トップページ | ・天体写真に写りこんだセンサごみ除去 »